分布式系统之CAP理论和BASE理论

1、CAP理论

2000年7月,加州大学伯克利分校的Eric Brewer教授在ACM PODC会议上提出CAP猜想。2年后,麻省理工学院的Seth Gilbert和Nancy Lynch从理论上证明了CAP。之后,CAP理论正式成为分布式计算领域的公认定理。

CAP理论为:一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项。

1.1 Consistency 一致性

一致性”all nodes see the same data at the same time”,即更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致,所以,一致性,说的就是数据一致性。

对于一致性,可以分为从客户端和服务端两个不同的视角。从客户端来看,一致性主要指的是多并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。

一致性是因为有并发读写才有的问题,因此在理解一致性的问题时,一定要注意结合考虑并发读写的场景。

从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。

三种一致性策略

对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。

如果能容忍后续的部分或者全部访问不到,则是弱一致性。

如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。

CAP中说,不可能同时满足的这个一致性指的是强一致性。

1.2 Availability 可用性

可用性指Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。

对于一个可用性的分布式系统,每一个非故障的节点必须对每一个请求作出响应。所以,一般我们在衡量一个系统的可用性的时候,都是通过停机时间来计算的。
可用性分类 可用水平(%) 年可容忍停机时间 容错可用性 99.9999 <1 min 极高可用性 99.999 <5 min 具有故障自动恢复能力的可用性 99.99 <53 min 高可用性 99.9 <8.8h 商品可用性 99 <43.8 min

通常我们描述一个系统的可用性时,我们说淘宝的系统可用性可以达到5个9,意思就是说他的可用水平是99.999%,即全年停机时间不超过(1-0.99999)/*365/*24/*60 = 5.256 min
,这是一个极高的要求。

好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。一个分布式系统,上下游设计很多系统如负载均衡、WEB服务器、应用代码、数据库服务器等,任何一个节点的不稳定都可以影响可用性。

1.3 Partition Tolerance分区容错性

分区容错性指the system continues to operate despite arbitrary message loss or failure of part of the system”,即分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性和可用性的服务。

分区容错性和扩展性紧密相关。在分布式应用中,可能因为一些分布式的原因导致系统无法正常运转。好的分区容错性要求能够使应用虽然是一个分布式系统,而看上去却好像是在一个可以运转正常的整体。比如现在的分布式系统中有某一个或者几个机器宕掉了,其他剩下的机器还能够正常运转满足系统需求,或者是机器之间有网络异常,将分布式系统分隔未独立的几个部分,各个部分还能维持分布式系统的运作,这样就具有好的分区容错性。

简单点说,就是在网络中断,消息丢失的情况下,系统如果还能正常工作,就是有比较好的分区容错性。

2、 CAP权衡

通过CAP理论,我们知道无法同时满足一致性、可用性和分区容错性这三个特性,那要舍弃哪个呢?

对于多数大型互联网应用的场景,主机众多、部署分散,而且现在的集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到N个9,即保证P和A,舍弃C(退而求其次保证最终一致性)。虽然某些地方会影响客户体验,但没达到造成用户流程的严重程度。

对于涉及到钱财这样不能有一丝让步的场景,C必须保证。网络发生故障宁可停止服务,这是保证CA,舍弃P。貌似这几年国内银行业发生了不下10起事故,但影响面不大,报到也不多,广大群众知道的少。还有一种是保证CP,舍弃A。例如网络故障事只读不写。

孰优孰略,没有定论,只能根据场景定夺,适合的才是最好的。

3、 BASE理论

eBay的架构师Dan Pritchett源于对大规模分布式系统的实践总结,在ACM上发表文章提出BASE理论,BASE理论是对CAP理论的延伸,核心思想是即使无法做到强一致性(Strong Consistency,CAP的一致性就是强一致性),但应用可以采用适合的方式达到最终一致性(Eventual Consitency)。

BASE是指基本可用(Basically Available)、软状态( Soft State)、最终一致性( Eventual Consistency)。

3.1 基本可用(Basically Available)

基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。

电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服务层也可能只提供降级服务。这就是损失部分可用性的体现。

3.2 软状态( Soft State)

软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysql replication的异步复制也是一种体现。

3.3 最终一致性( Eventual Consistency)

最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。

4、ACID和BASE的区别与联系

ACID是传统数据库常用的设计理念,追求强一致性模型。BASE支持的是大型分布式系统,提出通过牺牲强一致性获得高可用性。

ACID和BASE代表了两种截然相反的设计哲学

在分布式系统设计的场景中,系统组件对一致性要求是不同的,因此ACID和BASE又会结合使用。

5、参考资料

CAP和BASE理论
分布式系统的CAP理论


分布式系统之CAP理论和BASE理论
https://river106.cn/posts/6484d3f6.html
作者
river106
发布于
2018年9月15日
许可协议